
A Novel Hash-Based Streaming Scheme for

Energy Efficient Full-Text Search in Wireless
Data Broadcast�

Kai Yang1, Yan Shi1 Weili Wu1, Xiaofeng Gao2, and Jiaofei Zhong1

1 The University of Texas at Dallas, Richardson TX 75080, USA
{kxy080020,yanshi,weiliwu,fayzhong}@utdallas.edu
2 Georgia Gwinnett College, Lawrenceville, GA 30043

xgao@ggc.edu

Abstract. Full-Text Search is one of the most important and popular
query types in document retrieval systems. With the development of The
Fourth Generation Wireless Network (4G), wireless data broadcast has
gained a lot of interest because of its scalability, flexibility, and energy
efficiencies for wireless mobile computing. How to apply full-text search
to documents transmitted through wireless communications is thus a re-
search topic of interest. In this paper, we propose a novel data streaming
scheme (named Basic-Hash) with hash-based indexing and inverted list
techniques to facilitate energy and latency efficient full-text search in
wireless data broadcast. We are the first work utilizing hash technology
for this problem, which takes much less access latency and tuning time
comparing to the previous literature. We further extend the proposed
scheme by merging the hashed word indices in order to reduce the total
access latency (named Merged-Hash). An information retrieval protocol
is developed to cope with these two schemes. The performances of Basic-
Hash and Merged-Hash are examined both theoretically and empirically.
Simulation results prove their efficiencies with respect to both energy
consumption and access latency.

1 Introduction

Full-text search is a popular query type that is widely used in document retrieval
systems. Many commercial database systems have included full-text search as
their features. For example, SQL Server 2008 provides full-text queries against
character-based data in SQL Server tables [1]. Oracle Text [3] also gives powerful
support for full-text search applications. Many full-text search techniques in
different application areas have been proposed in literatures [2][5][6][11].

With the rapid development of mobile devices and quick rise of The Fourth
Generation Wireless Network (4G), mobile communication has gained popularity
due to its flexibility and convenience. Limited bandwidth in wireless communi-
cation and limited energy supply for mobile devices are the two major concerns
of mobile computing. That is why wireless data broadcast becomes an attractive
� This work is supported by NSF grant CCF-0829993 and CCF-0514796.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 372–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 373

data dissemination technique for mobile communication. In a wireless data broad-
cast system, Base Stations (BS) broadcast public information to all mobile devices
within their transmission range through broadcast channels. Mobile clients listen
to the channels and retrieve information of their interest directly when they ar-
rive. This scheme is bandwidth efficient because it utilizes most of the bandwidth
as downlink and requires little uplink traffics. It is also energy efficient because
receiving data costs much less energy than sending data.

Mobile devices usually have two modes: active mode and doze mode. In active
mode, a device can listen, compare, and download the required data; while in
doze mode, it turns off antennas and many processes to save energy. The energy
consumed in active mode can be 100 times of that in doze mode [15]. In general,
there are two major performance criteria for a wireless data broadcast system:
access latency and tuning time. Access latency refers to the time interval between
a client first tunes in the broadcast channel and it finally retrieves the data of
interest, which reflects the system’s time efficiency; tuning time is the total time
a client remains in active mode, which indicates the system’s energy efficiency.

How to apply full-text search in wireless data broadcast is an interesting but
challenging topic. Since data broadcast is especially suitable for public infor-
mation such as news report and traffic information, full-text search can be a
very useful feature desired by mobile clients. For example, a mobile user may
want to browse all news related to “FIFA”, or all local traffic information that
includes “accidents”. Full-text search for traditional disk-storage data has been
well studies [9][12][4]. However, in wireless data broadcast, the data are stored
“on the air” rather than on the disk, which posts new challenges to full-text
search. In disk-based storage, documents are stored in physical space, so clients
can “jump” among different storage slots with little cost; while in on-air storage,
documents are stored sequentially along the time line, which posts much more
cost for clients to search back and forth. Traditional full-text search techniques
cannot not be adopted directly because of this difference. On the other hand,
since existing index techniques for wireless data broadcast [10][17][8][19][20] are
mainly based on predefined structured data with key attributes, they also can-
not be directly applied for full-text search which uses arbitrary words as search
keys. Therefore, new design of indexing schemes are needed to facilitate full-text
search in order to ensure both time efficiency and energy efficiency.

To the best of our knowledge, [7] is the only published research on full-text
query processing in wireless data broadcast. They firstly utilized inverted list in
processing full-text queries on a wireless broadcast stream, and then proposed
two methods: Inverted-List and Inverted-List + Index-Tree which was extended
to (1, α) and (1, α(1, β)). They made use of an inverted list to guide full-text
search and a tree-based index to locate the key word in the inverted list. However,
this method is not energy efficient enough because it might take a long tuning
time to locate the key word in the inverted list. It is also not latency efficient
enough due to the duplication of tree-based index.

Inverted list is a mature indexing method for full-text search [18][22][14]. It is
a set of word indices which guides clients to find specific documents containing a

374 K. Yang et al.

specific word. In this paper, we apply inverted list as a guide for full-text search,
but implement hash function instead of searching tree as indexing method, to
avoid lengthening broadcast cycle and redundant tuning time for locating tar-
get word index. Note that hash function is used to index “word indices” in an
inverted list, which is the “index of indices”. So the index designed in this paper
is a hierarchical index scheme with two levels: (1) inverted list, the index for
documents, and (2) hash function, the index for word indices in an inverted list.

Compared with tree-based indexing technique, hash-based indexing for word
indices is more flexible and space efficient for full-text search in wireless data
broadcast. A hash function only takes several bytes while a searching tree may
take thousands of bytes depending on its design. Hash-based index is more suit-
able for full-text search because the nature of full-text search uses arbitrary words
as search keys. Based on this idea, we propose a novel data streaming scheme
named Basic-Hash to allocate inverted list and documents on the broadcast
channel. Basic-Hash is further improved to another streaming scheme named
Merged-Hash, by merging the hashed word indices to reduce access latency. A
client retrieval protocol is also developed corresponding to the two schemes. We
are the first work utilizing hash technology for full-text search in wireless data
broadcast. We also provide detailed theoretical analysis to evaluate the perfor-
mance of Basic-Hash and Merged-Hash, and then implement many numerical
experiments. Simulation results prove the efficiency of these two schemes with
respect to both energy and access latency.

To summarize, our main contributions include:

1. We are the first work implement inverted list and hash function for full-text
search in wireless data broadcast. We propose two novel wireless broadcast
streaming schemes, namely, Basic-Hash and Merged-Hash, to facilitate full-
text query on broadcast documents. For each scheme, we develop algorithms
for inverted index allocation, document allocation and query protocol.

2. We discuss how to turn collision issues of hash functions into advantage and
utilize appropriate collisions to reduce the access latency of full-text query.

3. We analyze the performances of Basic-Hash and Merged-Hash theoretically
by computing the expected access latency and tuning time for full-text queres
on broadcast streams created based on these two schemes.

4. We implement simulations for the proposed systems and analyze their per-
formances by simulation results.

The rest of the paper is organized as follows: Sec. 2 presents related works
on wireless data broadcast, full-text search involving inverted list techniques,
and recent research on full-text search for wireless data broadcast systems; Sec.
3 introduces the system model and some preliminaries; Sec. 4 first discusses
the Basic-Hash broadcast streaming scheme to facilitate full-text search and
then extends Basic-Hash to Merged-Hash to improve the performance; Sec. 5
theoretically analyzes the performances of Basic-Hash and Merged-Hash; Sec. 6
empirically analyzes Basic-Hash and Merged-Hash based on simulation results;
and Sec. 7 concludes the paper and proposes future research directions.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 375

2 Related Work

Wireless data broadcast has gained many attentions during the past few years.
Imielinski et al. first gave an overview on wireless data broadcast systems in
[10]. They also proposed a popular B+-tree based distributed index to achieve
energy efficiency. Many different index methods were proposed thereafter. Yao
et al. [17] proposed an exponential index which has a linear but distributed
structure to enhance error-resilience. In [21], the trade-off between confidentiality
and performance of signature-based index was discussed. Hash-based index for
wireless data broadcast was also proposed in [16]. All these index techniques,
however, focus only on structured data with predefined key attributes. They
cannot be applied directly to guide full-text queries.

Inverted list is a popular structure in document retrieval systems and a well-
known technique for full-text search. Tomasic et al. [14] studied the incremental
updates of inverted lists by dual-structure index. Scholer et al. [13] discussed the
compression of inverted lists of document postings which contains the position
and frequency of indexed terms and developed two approaches to improve the
document retrieval efficiency. Zobel et al. gave a survey on inverted files for text
search engines in [22]. Zhang et al. [18] studied how to process queries efficiently
in distributed web search engines with optimized inverted list assignment. Most
research works on inverted list are based on disk-storage documents. For on-air
documents, modifications are needed to adjust to on-air storage features.

Chung et al. [7] firstly applied inverted list for full-text search in wireless
data broadcast. They also combined tree-based indexing technique with inverted
list for full-text query on broadcast documents. However, the construction of a
searching tree and the duplication of inverted list will extend the total length
of a broadcast cycle heavily, resulting additional access latency. Moreover, the
average search time for a searching tree heavily relies on the depth of the tree,
which is much more than the searching time of a hash function. Therefore, we
replace the search tree with hash function design and construct a more efficient
data streaming scheme for full-text search in wireless data broadcast.

3 Preliminary and System Model

3.1 System Model

For simplification, we only discuss the situation for one Base Station (BS) with
one communication channel. The broadcast program will not update during a
period of time. The BS will broadcast several documents periodically in cycle.
Each document only repeats once in a broadcast cycle. Let D denote a set of
t documents to be broadcast. D = {doc0, doc1, · · · , doct−1}. Each doci will be
broadcast as several buckets on a channel, each with different size. Here bucket
is the smallest logical unit on a broadcast channel. Assume yi is the size of doci,
measured by buckets, and Y ={y0, y1, · · · , yt−1}.

There are altogether v non-duplicated words in D, denoted as K={k0, k1,
· · · , kv−1}. Let w be the length of each word measured in bytes (here we assume
on average, each word has the same length).

376 K. Yang et al.

Besides documents, we also need to insert indices to form a full broadcast
cycle. As mentioned in Sec. 1, we will apply inverted list and hash function
together as a searching method. A hash function will be appended to each of the
bucket, while the inverted list will be split into word indices and interleave with
document buckets. After all the process, we will form a whole broadcast cycle,
consisting of a sequence of broadcast buckets. Each bucket will have a continuous
sequence number starting from 0. Let bcycle denote this bucket sequence, and
|bcycle| denote the whole number of buckets in one broadcast cycle.

3.2 Inverted List

To facilitate full-text search in wireless data broadcast systems, we apply in-
verted list technique. For full-text search, each word can be related to several
documents and each document contains usually more than one word. To resolve
such many-to-many relationship between documents and words, inverted list has
been popularly used as an index in data retrieval systems [18][22][14].

k1 doc1 doc2 doc3 doc4 doc5 doc6 k3 doc1 doc3 k4 doc1 doc3

k5 doc4 k6 doc3 k7 doc4 k8 doc4 k9 doc1 k10 doc2 doc3 k11 doc1 doc2 doc3 doc5

k12 doc2 k13 doc2 doc6 k14 doc2 doc6 k15 doc1 doc2 doc3 doc4

k2 doc2 doc3 doc5

Fig. 1. Example of an Inverted List for Broadcast System

Let I be an inverted list composed of v entries representing v non-duplicated
words in D. In each entry, a word ki is linked with a set of document address
pointers which can guide clients to find documents containing this word. We
name each entry a word index, denoted as ei. The number of pointers in each word
index depends on how many documents contain this word and is not necessarily
the same. Fig. 1 is an example of an inverted list generated from 6 documents.
Each pointer indicates the time offset from the index to the target document.
Clients can tune off during this offset, and tune on again to save some energy.

Instead of treating an inverted list as a whole, we split it into a set of word
indices, each of which is a pair of a word and a list of offsets that points to
documents containing the word, that is, I = {ei, i = 0, · · · , v − 1} where ei =<
ki : doc addr offset list i > .

For each word index ei ∈ I, si denotes its number of document address offsets.
Assume a is the length of one document address pointer measured in bytes, then
the length of ei can be easily computed as w + asi.

3.3 Hash Function and Collisions

There are many hash functions that can hash strings into integers. In this paper,
only hashing a word into an integer is not enough. We need to hash a word into
a bucket on a broadcast cycle. If |bcycle| denotes the length of a broadcast cycle,
we should map the integer result to a sequence number between 0 and |bcycle|-1.

Collisions can be quantified by collision rate γ. In this paper, a collision hap-
pens when a word index is hashed to the same bucket as some previously hashed

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 377

word indices were. In this case, the collision rate γ = total number of collisions/v.
In most hashing applications, collisions are what designers try to avoid be-
cause it increases the average cost of lookup operations. However, it is inevitable
whenever mapping a large set of data into a relatively small range. While most
hash function applications struggle for collision issues, our method is much more
collision-tolerant. In fact, appropriate collisions are even beneficial. This is be-
cause in our method, hash scheme is only used to allocate the word indices in
the inverted list and usually the sizes of most word indices are not exactly the
size of a bucket. Therefore, more than one word indices hashed into the same
bucket may help increasing the bucket utilization factor, which will reduce the
length of a broadcast cycle and the average access latency of query processing.
We will do a more detailed discussion on the collision issue in Subsec. 4.1.

3.4 Data Structure of a Bucket

A bucket is composed of two parts: header and payload. Header records basic
information of a bucket such as bucket id and sequence number, while payload
is the part of a bucket to store data. In our model, there are two different
types of buckets: index bucket which stores word indices, and document bucket
which stores documents. Index and document buckets have the same length and
header structure. Hence, we can use the number of buckets to measure both Y
and |bcycle|. If the total number of index buckets within one broadcast cycle is
|IB| and the total number of document buckets is |DB|, then we should have:

|bcycle| = |DB| + |IB| . (1)

Next, we will illustrate the detailed design of index and document buckets. As-
sume a bucket is capable of carrying l bytes information. For both index and
document buckets, the header contains the following information in Tab. 1.

Table 1. Information in a Bucket Header

Item Description

TYPE: whether the bucket is an index or document bucket.
LEFT: length of unused space, measured in bytes.
END: whether the index or document ends.

MERGEP: time offset of merged index bucket.
SQ: sequence number of a bucket. In this method, SQ is also the hash value.

OFFSET: distance to the next bucket containing the same document.
HASH: hash function to compute sequence number of target index bucket.

For a document bucket, the payload is part of a document or a complete doc-
ument, depending on the document size. For an index bucket, the payload may
contain a part of a long word index or several short word indices. Fig. 2 illustrates
the whole view of a broadcast cycle and details of index and document buckets.
Here grey block D denotes document buckets, while white block I denotes an
index bucket. Each document doci has yi document buckets, but they may be
separated by some index bucket, not necessarily consecutively broadcasted.

378 K. Yang et al.

Table 2. Symbol Description

Sym Description Sym Description

D document set. D = {doc0, · · · , doct−1} a document pointer size.
Y document length. Y = {y0, · · · , yt−1} l bucket size.
K word set. K = {k0, · · · , kv−1} t number of documents.
I an inverted list. I = {e0, · · · , ev−1} v number of keywords.
S S = {s0, · · · , sv−1}, where si is the w word size.

number of document pointers in ei. γ collision rate.
Avg(S) average number of document δ merge rate.

pointers in each word index. bcycle one broadcast cycle.
|IB| number of index buckets. |bcycle| length of bcycle.
|DB| number of document buckets. |ibcycle| initial broadcast cycle length.
|MIB| number of index buckets after merging. Avg(AL) average access latency.
|AKE| average length of the keyword entry. Avg(TT) average tuning time.

For convenience, Tab. 2 lists all symbols used in this paper. Some will be
defined in the following sections.

4 Hash-Based Full-Text Search Methods

In this section, we will introduce the construction of two data streaming schemes
for full-text search, which are Basic-Hash and Merged-Hash. Data streaming
scheme is a preprocessing before documents are broadcasted on channels. It will
interleave documents and inverted list as a whole data stream, allocate index
buckets and data buckets according to the predefined hash function, and then
setup corresponding address pointer and other information for clients to search
words of interest and retrieve target documents.

In the following subsections, we will discuss the construction of Basic-Hash
and Merged-Hash, with detailed algorithm description, examples, and scenario
discussion. Finally, we propose an information retrieval protocol for mobile/
wireless clients to retrieve their interest documents.

4.1 Basic-Hash Data Streaming Scheme

Full-text query processing can be achieved by adding the inverted list onto the
broadcast channel. If we put the inverted list directly in front of the documents,
the average tuning time can be dramatically long because the client needs to
go through the inverted list one by one to find the word index of interest. This
tuning time overhead can be reduced by a two-level index scheme which adds
another level of index for the inverted list.

In this subsection, we propose a novel two-level index scheme for full-text
search called Basic-Hash method. The idea is to hash all word indices in the
inverted list onto the broadcast channel. The documents and word indices are
interleaved with each other. We choose hashing rather than tree-based indexing
as the index for the inverted list because it is faster and doesn’t occupy much
space. Once a client tunes in the broadcast channel, it reads the hash function

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 379

in the header of a bucket and computes the offset to the target word index
immediately. The tuning time to reach the word index of interest is only 2 in the
ideal case. Hash function also takes little space from the header of each bucket,
without occupying extra index buckets.

It takes three steps to construct a bcycle using Basic-Hash broadcast scheme:

Step 1: Index Allocation. Hash all word indices onto broadcast channel (Alg. 1);
Step 2: Document Allocation. Fill empty buckets with documents (Alg. 2).
Step 3: Pointer setup. Set offset information for pointers in word indices and

document/index buckets.

Hash Function. Before index allocation and document allocation, we need to
construct our hash function. Recall that there are t documents to broadcast, each
with yi buckets. I is split into v entries, each with a document address offset list
of size si. Each word has w bytes, each document address pointer is a bytes, and
each bucket contains l bytes (we ignore the length of the header). Initially, we do
not know |bcycle|, so we will use an estimated |ibcycle| to represent the length of
a broadcast cycle. It is easy to know, |ibcycle| = ∑t−1

i=0 yi+ 1
l {a

∑v−1
j=0 sj +v×w}.

Then the hash function should be:

Hash(string) = hashCode(string) mod |ibcycle|.
In the above equation, the input string will be a word (string), while the

output is an integer between 0 and |ibcycle| − 1. This function maps a word
index to a broadcast bucket with sequence number equal to hashed value.

Index Allocation. Algorithm 1 describes Step 1 of Basic-Hash: hashing all
word indices onto broadcast channel. Let A denote the bucket sequence array.
Initially, A contains |ibcycle| empty bucket with consecutive sequence number
starting from 0. We use A[0], · · · , A[|ibcycle| − 1] to represent each bucket. The
main idea of Alg. 1 is: firstly, sort I by si, i = 0, · · · , v − 1 in increasing order as
I ′ = {e′0, · · · , e′v−1}. Next, hash each e′i onto the channel in order.

The sorting process guarantees that during allocation, if more than one word
index are hashed to the same bucket, the shorter word index will be assigned to
the bucket first and longer word indices will be appended thereafter, which helps
reducing the average tuning time for a client to find the word index of interest.

Since each bucket has l bytes capability, it may include more than one word
index. Once encountering a collision, we will append e′i right after the existing
index. If this bucket is full, then find the next available bucket right forward and
insert e′i. It is also possible that there is no enough space for e′i. In this situation,
we will push other word indices in buckets with higher sequence number, and
“insert” e′i. An example is shown in Fig. 3.

Fig. 3 illuminates several scenarios for index allocation. In (a), word index e5

should be insert into bucket A[9]. Since A[9] is empty, we directly insert e5 into
it. If the size of e5 is larger than A[9], the rest part will be appended to A[10]
or more buckets. In (b), e2, e3, and e5 have been allocated already, and we are
going to insert e7 to A[7]. Since e2 is already allocated at A[7], and there is still
enough space left in A[7], we append e7 after e2. In (c), e1 should be inserted

380 K. Yang et al.

I I IID II

PayloadHeader

PayloadHeader

TYPE
SQ

LEFT
END

MERGEP
OFFSET
HASH

DDDD

k1:doc_offset_list1

k2:doc_offset_list1

k3:doc_offset_list1...

Index
Bucket

Document
Bucket

Broadcast
 Cycle

Fig. 2. Whole View of bcycle

e7e7e7e2e3

6 7 8
e5

9

e1

e2e3

6 7 8
e5

9
e1 e1 e7 e7

6 7 8Sq#
e5

9
Bucket

e2e3

6 7 8
e5

9

e7

e7e7e7e2e3

6 7 8
e5

9

Allocate ei to an empty bucket

Allocate ei to a bucket with enough space

Allocate ei to a bucket with push process

(a)

(b)

(c) Push

Fig. 3. Index Allocation Scenario Analysis

Algorithm 1. Index Allocation For Basic-Hash
input: I , A;
output: A filled with word indices;

1: sort I by si increasingly to I ′ = {e′0, · · · , e′v};
2: for i = 0 to v − 1 do
3: sq = Hash(k′

i);
4: check whether A[sq] is full, if yes, set sq = sq + 1 until A[sq] is not full;
5: insert e′i into A[sq], if there is not enough space, then push data from A[sq + 1]

forward until e′i can be successfully inserted.
6: end for

into A[6]. e2, e3, e5, and e7 has already been allocated onto the channel before
inserting e1. Note that A[6] does not have enough space for e5. Thus from A[7],
all the data entries should be moved forward until e1 can fit into the channel.
Since there is some unfilled space between e7 and e5, e5 will not be influenced.
Detailed description of index allocation is illustrated in Alg. 1.

Data Allocation. Alg. 2 discusses how to allocate documents after index allo-
cation process. Since each bucket can be either an index bucket or a document
bucket, we cannot append documents to these buckets which already contain
indices. Therefore, starting from A[0], we will scan each bucket in order, and
insert documents from doc0 to doct−1 sequentially to the empty buckets. Each
doci will take yi buckets. We use docj

i to denote the jth bucket for doci in short.

Pointer Setup. Besides index allocation and data allocation, we need to setup
the offset (address) information for pointers inside each word index, as well as
OFFSET in each bucket header (since each document doci will be split into
yi buckets, and may not be consecutively allocated, we need another pointer to
figure out this information). Pointers for word indices in buckets and OFFSET
in headers can only be setup after the index and data allocation, because we did
not know the locations of documents before that. To fill OFFSET in headers,
we can scan reversely from the last bucket of the bcycle, record the sequence
number of each docj

i , and then fill the offset information.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 381

Algorithm 2. Document Allocation for Basic-Hash
input: D, A;
output: a complete broadcast stream A;

1: sq = 0, j = 0;
2: for i = 0 to t − 1 do � Insert doci onto channel
3: while j < yi do
4: if A[sq] is empty then append docj

i to A[sq]; j = j + 1; sq = sq + 1;
5: else sq = sq + 1; end if
6: end while
7: j = 0; � Reset intermediate variable
8: end for

e4

e4 e7e11e6e15e3e14e13e2e1e9e5e8e10

1 2 1918171615141312111098765430 20 21 22 2423

Initial Broadcast Cycle

After Index Allocation

After Document Allocation

25

e11 e12

e7e11e6e15e3e14e13e2e1e9e5e8e10

1 2 1918171615141312111098765430 20 21 22 2423

Broadcast Cycle for Basic-Hash

25
doc1 doc1 doc2 doc2 doc3 doc3 doc4 doc4 doc6

e11 e12

doc5 doc5 doc5

e1

e1

(b)

(a)

Fig. 4. Index and Document Allocation of Hash-Based Method

An Example. We apply Basic-Hash to the document set described in Fig. 1 as
an example to demonstrate the complete streaming procedure. Assume w = a =
4bytes. We can then compute the length of each word index. Assume l = 24bytes,
each of doc1, doc2, doc3 and doc4 takes 2 buckets, doc5 takes 3 bucket, and doc6

takes 1 bucket. Based on the above information, we can compute |ibcycle| = 20.
Following Alg. 1, we first allocate all word indices onto the channel. Then, we use
Alg. 2 to allocate 6 documents. The broadcast cycle after index and document
allocations is presented in Fig. 4 respectively. Finally, after bcycle is constructed,
we need to fill the necessary header and pointer information to each bucket.

4.2 Merged-Hash Data Streaming Scheme

Basic-Hash method can dramatically shorten the average tuning time of the
search process than the Inverted List method in [7]. The average access latency,
however, is much longer. The reason is that in Inverted List method, all the
word indices are combined together, and inserted into consecutive buckets. On
the other hand, Basic-Hash method separates them and maps each index respec-
tively into disconnect buckets, which makes |bcycle| much longer. For example,
if the document number is 1000, total number of words is 500, the inverted list
may only occupy 100 bucket; while a non-conflict hash function maps words
in different buckets from each other, which occupies 500 buckets. The |bcycle|
expands from 1100 to 1500, and the average access latency is thus influenced.

Merged-Hash Algorithm. Merged-Hash aims at reducing average access la-
tency by reducing the number of index buckets. Compared with Basic-Hash,
Merged-Hash has one more step: Merge Word Index. It will be performed between

382 K. Yang et al.

Alg. 1 and 2. The purpose is to combine adjacent index fragments into one bucket
to make full use of bucket space. Merge process can reduce |bcycle|without increas-
ing average tuning time.

The idea of Merge Word Index algorithm is: starting from the last index
bucket A[i], if its closest previous index A[j] can be merged into A[i], then
append A[j] to A[i], and delete A[j]. Repeat this process until either A[i] is full
or its closest previous index A[j] is full or cannot be merged into A[i]. Next,
find another A[i] and repeat the above process, until all index buckets have been
scanned. The detailed description is showed in Alg. 3.

Algorithm 3. Merge Word Index
input: A;
output: A with merged word indices;

1: find the last non-full index A[i], set M = A[i];
2: while M is not full do
3: find its closest previous index A[j];
4: if A[j] is not full and M has enough space for A[j] then
5: append A[j] to M , delete A[j];
6: else M = A[j], Break; end if
7: end while
8: repeat Line 2 to Line 7 until all index buckets have been scanned.

An Example. We also use an example shown in Fig. 5(a) to illustrate Alg. 3.
Merge process begins at bucket 17 with M moving backwards. We can see that
word indices in bucket 16 is merged in bucket 17 because there is enough space
for them to append. And we also observe that bucket 15 does not follow the step
of bucket 16, because after bucket 16 is merged to bucket 17, their is not enough
space any more to append the whole indices in bucket 15. For each bucket that
is merged to another bucket, MERGEP in header indicates the offset between
these two buckets for clients to keep track of the index. For instance, MERGEP
in bucket 16’s header is 1 and MERGEP in bucket 1’s header is 2. Note that the
merging operation is based on bucket instead of index. Hence, it is possible that
an index will be split after merging. In such cases, we also need MERGEP to
direct clients. For example, the second part of e1 in bucket 6 is merged to bucket
7, so it is separated from its first part in bucket 5. With the help of MERGEP, the
tuning time to read such an index only increases by 1, while merging operation
dramatically reduces the |bcycle|.

e4 e7e11e6e15e3e14 e13e2e1e9e5 e8e10

1 2 1918171615141312111098765430 20
After Index Merge

e11e12

e4 e7e11e6e15e3e14 e13e2e1e9e5 e8e10

1 2 1918171615141312111098765430 20

Broadcast Cycle for Merged-Hash

doc1 doc2 doc2 doc3 doc3 doc4 doc4 doc5 doc5 doc5 doc6doc1

e11e12

After Document Allocation

e1

e1

(a)

(b)

Fig. 5. Index and Document Allocation of Merged-Based Method

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 383

After Basic-Hash, the broadcast channel looks as Fig. 4(a), with 13 index
buckets. If we merge index buckets following Alg. 3, the number of index buckets
will decrease to 9, as shown in Fig. 5(a). Comparing Fig. 4(b) and 5(b), we see
that |bcycle| after merging is reduced to 20, which is the same as |ibcycle|; while
|bcycle| without merging is 25, which is 20% longer than |ibcycle|.

4.3 Information Retrieval Protocol

After document allocation, the whole bcycle is built. Next, we discuss information
retrieval protocol. A mobile client will firstly access onto the channel, read the
current bucket and get hash function. Next, it computes a sequence number
hashed from target word w, and waits until this bucket appears. Then it will
follow the direction of bucket pointers to find the word index containing the
information of w, and read every offset inside the doc offset list. Finally, it waits
according to these time offsets and download the requested documents one by
one. The detailed description of this algorithm is illustrated in Alg. 4.

Algorithm 4. Information Retrieval Protocol
input: keyword w;
output: a set of documents containing w;

1: read current bucket cb, get hash function hash(·); compute sq = hash(w);
2: if A[sq] is not the current bucket then wait for the A[sq]; end if
3: read A[sq], follow index pointer to find ei with w.
4: read all the addresses of document containing w;
5: for each document offset do wait and download the document buckets; end for

5 Performance Analysis

In this section, we will give theoretical analysis for both Basic-Hash and Merged-
Hash with respect to the average access latency and tuning time.

5.1 Analysis for Basic-Hash

For an inverted list, the average number of documents linked to a word is
Avg(S) =

∑v−1
i=0 si/v. The average length of a word index |AKE| = w+aAvg(S).

Theorem 1. The average access latency of Basic-Hash is
(

1
2

+
Avg(S)

Avg(S) + 1

) (
t−1∑

i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉

(1 − γ)v

)

. (2)

Proof. In Basic-Hash, average access time (Avg(AL)) is the sum of probe wait
and bcast wait, where probe wait denotes the latency of finding target word index
bucket and bcast wait is the time needed to download all documents containing
the requested word. If documents are uniformly distributed on the channel,

Avg(AL) =
|bcycle|

2
+

Avg(S)|bcycle|
Avg(S) + 1

. (3)

384 K. Yang et al.

From Eqn. (1), we have

|bcycle| =
t−1∑

i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉

v(1 − γ) (4)

Combining Eqn. (3) and (4), we can derive Eqn. (2).

Theorem 2. The average tuning time of Basic-Hash is 1+
⌈
|AKE|
(1−γ)l

⌉
+Avg(S)

t

t−1∑

i=0

yi.

Proof. The average tuning time (Avg(TT)) includes time of 1) initial probing,
2) reading target index bucket and 3) downloading target documents. Initial
probing takes time 1. After initial probe, the client computes the hashed value,
dozes and tunes in the hashed bucket directly. The time needed to read the
target index bucket is �|AKE|/((1 − γ)l)�. On average, there are Avg(S) doc-
uments containing a word, so the time needed to download these documents is
Avg(S)

∑t−1
i=0 yi/t. Summing the above three parts, we can get the conclusion.

5.2 Analysis for Merged-Hash

For Merged-Hash scheme, index buckets are merged according to Alg. 3 after
word indices are hashed to the channel. We define |MIB| to represent the total
number of index buckets after merging, and merge rate δ = |MIB|/|IB| to
indicate the effect of merging. δ is bounded between [�1/|AKE|�, 1].

Theorem 3. The access latency of Merged-Hash is

(
1
2

+
Avg(S)

Avg(S) + 1

) (
t−1∑

i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉

(1 − γ)vδ

)

. (5)

Proof. The access latency of Merged-Hash scheme is also computed as Eqn. (3).
The difference is how to get |bcycle|. In Merged-Hash, the length of a bcycle is:

|bcycle| = |DB| + |MIB| =
t−1∑

i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉

(1 − γ)vδ.

Theorem 4. The tuning time of Merged-Hash is 2+ δ
⌈
|AKE|
(1−γ)l

⌉
+ Avg(S)

t

t−1∑

i=0

yi.

Proof. Similar as Basic-Hash, the tuning time for Merged-Hash is also composed
of three parts. If the word index of interest did not merge with any other index,
the tuning time is exactly the same as in Basic-Hash. If the word index merged
with other indices, it means the size of this index is smaller than an index bucket.
So it takes 1 unit time to read. Therefore, the average tuning time to read word
index is (1−δ)+δ�|AKE|/((1 − γ)l)�. Combining with the tuning time for initial
probing and document downloading, we can prove Thm. 4.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 385

6 Simulation and Performance Evaluation

In this section, we will evaluate the Basic-Hash and Merged-Hash methods by
simulation results. We also compare Merged-Hash method with Inverted List
and Inverted List + Tree Index methods in [7]. The performance metrics used
are average access latency (AAL) and average tuning time (ATT).

The simulation is implemented using Java 1.6.0 on an Intel(R) Xeon(R) E5520
computer with 6.00GB memory, with Windows 7 version 6.1 operating sys-
tem. We simulate a base station with single broadcast channel, broadcasting
a database of 10,000 documents with a dictionary of 5,000 distinct words. For
each group of experiments, we generate 20,000 clients randomly tuning in the
channel and compute the average of their access latency and tuning time.

6.1 Comparison between Basic-Hash and Merged-Hash

We use two experiments to compare the performance of Basic-Hash and Merged-
Hash. In the first experiment, we vary the size of the word dictionary from 1,000
to 5,000, while the number of documents is fixed to 10,000. This simulates how
similar a set of documents are. Documents with more similar topics may have
more words in common, which results in a smaller dictionary. The content of
each document is randomly generated from the dictionary. The repetitions of a
word in a document is uniformly distributed between 1 and 5. The number of
non-replicated words contained in a document is set between 1 and 50.

Fig. 6. AAL w.r.t. Word No. Fig. 7. ATT w.r.t. Word No.

Fig. 8. AAL w.r.t. Document No. Fig. 9. ATT w.r.t. Document No.

386 K. Yang et al.

Fig. 6 shows average latency of Basic-Hash and Merged-Hash in this set-
ting. Obviously, Merged-Hash has a much shorter access latency than Basic-
Hash. This verifies our prediction that by merging hashed indices, we can reduce
|bcycle| and thus reduce average access latency. In fact, when the dictionary
size is 5000, |bcycle| of Basic-Hash is 14047 while tit is only 11284 for Merged-
Hash. When the total number of words increases, the advantage of Merged-Hash
compared with Basic-Hash becomes more obvious.

Fig. 7 presents the average tuning time. We can observe that no matter how
the dictionary size changes, the average tuning times of Basic-Hash and Merged-
Hash are very similar with each other. This is because merging word indices do
not have much impact on the time for reading a word index of interest.

The second experiment is to evaluate the influence of document set size to
the performances of proposed two streaming scheme. We generate D in the same
way. Then, randomly choose subsets of D to form eight smaller-sized document
set ranging from 1,000 to 9,000. Fig. 8 indicates that Merged-Hash performs bet-
ter than Basic-Hash with respect to average access latency no matter how large
the document set size is. The difference between Merged-Hash and Basic-Hash
first increases as the number of documents increases, then almost remains un-
changed after the document set size reaches 6000. Similar as the first experiment,
whatever document set size is, the difference between average tuning times of
these two streaming schemes is negligible.

6.2 Comparison with Other Methods

In [7], the authors proposed two full-text search method: Inverted List method
(IL) and Inverted List + Tree Index method (IL+TI). For a fair comparison, we
set the simulation environment exactly the same as in [7]. We generate 10,000
documents, each of size 1024 bytes. The contents of documents are randomly
generated from 4703 distinct words. The bucket size is 1024 bytes. The repeti-
tions of a word in a document is 1 to 5, in a uniform way. The Avg(S) is 51,
which is also the same as in [7]. All results are averaged based on 20,000 clients.

Table 3. Comparison of three full-text search methods

IL IL+TI Merged-Hash

average access latency 14901 16323 16312

average tuning time 916 91 54

Tab. 3 compares the average access latency and tuning time of IL, IL+TI
and Merged-Hash. Compared with IL, both IL+TI and Merged-Hash can dra-
matically reduce average tuning time by indexing the inverted list. Merged-Hash
costs even 40.7% less average tuning time than IL+TI. Therefore, Merged-Hash
is the most energy efficient scheme among three. This verifies our analysis that
hashing can speed up the searching within the inverted list and consequently re-
duce tuning time. The average access latency of Merged-Hash are slightly longer
(9.5%) than IL. The reason is that although hashing itself does not require ded-
icated index bucket, hashing word indices into different buckets may not make

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 387

full use of the bucket capacity. Therefore, |MIB| may be larger than the number
of buckets needed to fill in a complete inverted list. However, Merged-Hash still
has very similar average access latency with IL+TI.

7 Conclusion

In this paper, we proposed two novel wireless data broadcast streaming schemes:
Basic-Hash and Merged-Hash, which provide a two-level indexing to facilitate
the full-text query processing in the wireless data broadcast environment. The
proposed methods utilizing hash technique to index the inverted list of document
broadcasted, which itself is an index for full-text search. For each scheme, we
designed detailed index allocation and document allocation algorithms, together
with a corresponding querying processing protocol. The performances of these
two schemes were analyzed both theoretically and empirically. Simulation results
indicate that Merged-Hash is the most energy-efficient streaming scheme among
all broadcast schemes for full-text search in existing literatures. In the future,
we plan to extend Merged-Hash to increase the utilization ratio of index buckets
in order to further reduce the access latency and tuning time of full-text query
processing. We also plan to explore how to adopt other traditional full-text search
methods to the wireless broadcast environment.

References

1. http://msdn.microsoft.com/en-us/library/ms142571.aspx

2. Amer-Yahia, S., Shanmugasundaram, J.: Xml full-text search: challenges and op-
portunities. In: VLDB 2005 (2005)

3. Asplund, M.: Building full-text search applications with oracle text,
http://www.oracle.com/technology/pub/articles/asplund-textsearch.html

4. Atlam, E.S., Ghada, E.M., Fuketa, M., Morita, K., Aoe, J.: A compact memory
space of dynamic full-text search using bi-gram index. In: ISCC 2004 (2004)

5. Blair, D.C., Maron, M.E.: An evaluation of retrieval effectiveness for a full-text
document-retrieval system. Commun. ACM 28(3), 289–299 (1985)

6. Brown, E.W., Callan, J.P., Croft, W.B.: Fast incremental indexing for full-text
information retrieval. In: VLDB 1994, pp. 192–202 (1994)

7. Chung, Y.D., Yoo, S., Kim, M.H.: Energy- and latency-efficient processing of full-
text searches on a wireless broadcast stream. IEEE Trans. on Knowl. and Data
Eng. 22(2), 207–218 (2010)

8. Chung, Y.C., Lin, L., Lee, C.: Scheduling non-uniform data with expected-
time constraint in wireless multi-channel environments. J. Parallel Distrib. Com-
put. 69(3), 247–260 (2009)

9. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM Trans. Inf. Syst. 2(4), 267–288
(1984)

10. Imielinski, T., Viswanathan, S., Badrinath, B.r.: Data on air: Organization and
access. IEEE Trans. on Knowl. and Data Eng. 9(3), 353–372 (1997)

11. Kim, M.S., Whang, K.Y., Lee, J.G., Lee, M.J.: Structural optimization of a full-text
n-gram index using relational normalization. The VLDB Journal 17(6), 1485–1507
(2008)

http://msdn.microsoft.com/en-us/library/ms142571.aspx
http://www.oracle.com/technology/pub/articles/asplund-textsearch.html

388 K. Yang et al.

12. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

13. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression of inverted indexes
for fast query evaluation. In: SIGIR 2002, pp. 222–229 (2002)

14. Tomasic, A., Garćıa-Molina, H., Shoens, K.: Incremental updates of inverted lists
for text document retrieval. SIGMOD Rec. 23(2), 289–300 (1994)

15. Viredaz, M.A., Brakmo, L.S., Hamburgen, W.R.: Energy management on handheld
devices. Queue 1(7), 44–52 (2003)

16. Xu, J., Lee, W.C., Tang, X., Gao, Q., Li, S.: An error-resilient and tunable dis-
tributed indexing scheme for wireless data broadcast. IEEE Trans. on Knowl. and
Data Eng. 18(3), 392–404 (2006)

17. Yao, Y., Tang, X., Lim, E.P., Sun, A.: An energy-efficient and access latency op-
timized indexing scheme for wireless data broadcast. IEEE Trans. on Knowl. and
Data Eng. 18(8), 1111–1124 (2006)

18. Zhang, J., Suel, T.: Optimized inverted list assignment in distributed search engine
architectures. In: Parallel and Distributed Processing Symposium, International,
p. 41 (2007)

19. Zhang, X., Lee, W.C., Mitra, P., Zheng, B.: Processing transitive nearest-neighbor
queries in multi-channel access environments. In: EDBT 2008: Proceedings of the
11th International Conference on Extending Database Technology, pp. 452–463
(2008)

20. Zheng, B., Lee, W.C., Lee, K.C., Lee, D.L., Shao, M.: A distributed spatial index
for error-prone wireless data broadcast. The VLDB Journal 18(4), 959–986 (2009)

21. Zheng, B., Lee, W.C., Liu, P., Lee, D.L., Ding, X.: Tuning on-air signatures
for balancing performance and confidentiality. IEEE Trans. on Knowl. and Data
Eng. 21(12), 1783–1797 (2009)

22. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2), 6 (2006)

	A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search in Wireless Data Broadcast
	Introduction
	Related Work
	Preliminary and System Model
	System Model
	Inverted List
	Hash Function and Collisions
	Data Structure of a Bucket

	Hash-Based Full-Text Search Methods
	Basic-Hash Data Streaming Scheme
	Merged-Hash Data Streaming Scheme
	Information Retrieval Protocol

	Performance Analysis
	Analysis for Basic-Hash
	Analysis for Merged-Hash

	Simulation and Performance Evaluation
	Comparison between $Basic-Hash$ and $Merged-Hash$
	Comparison with Other Methods

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

